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ABSTRACT

A model which approximates the three-dimensional velocity
fluctuations of wind turbulence has been developed. The model
provides a velocity field which varies randomly with time and
space and gives the proper correlation between spatial locations
and velocity components. In addition, the spectral representa-
tions approximate those observed from a rotating reference
frame. The version of the model described in this report is a
time domain simulation. It makes use of a random number gener-
ator to construct a white noise time series with a uniform power
spectral density over the frequency range of interest. This
noise source is then passed through a set of appropriate linear
filters'to obtain the various wind velocity fluctuations which
would be experienced by a rotating wind turbine blade.

It is expected that this model of the turbulent atmospheric
wind will be used as a wind simulation for other more complex
dynamics codes which are used to compute dynamic loads. For this
reason, the turbulence simulator has been kept as simple as
possible, and was designed to compute the wind fluctuations as

rapidly as possible.




INTRODUCTION

The objective of this report is to develop a time domain
simulation model which approximates the three-dimensional veloc-
ity fluctuations of wind turbulence. The model provides a veloc-
ity field which varies randomly with time and space and gives the
proper correlationrbetween spatial locations and velocity compo-
nents, In addition, the spectral representations approximate
those observed for a rotating reference frame. It makes use of a
random number generator to construct a white noise series with a
uniform power spectral density over the frequency range of inter-
est. This noise source is then passed through a set of appropri-
ate linéar filters to obtain the various wind velocity fluctua-
tions which would be experienced by a rotating wind turbine
blade.

The program is written in Fortran V on the CDC Cyber 170/720
series. It is designed in a block-structured form so various
tasks performed within the program are essentially separate rou-
tines and are linked together by an executive program. Appen-
dices C through F include a complete program listing, a sample
input data file, a procedural example of the interactive fea-
tures, and results of the sample run as observed from the tip of

a Mod-0A w:nd turbine blade.




CHAPTER 1. TURBULENCE MODEL

1.1 Introduction

Fluctuations in the aerodynamic forces on a wind turbine
blade are generated by the relative motions of the air with
respect to the blade. These relative motions are comprised of
two parts: the motions of the blade and the motions of the
air. The motions of the air can further be divided into the
undisturbed turbulent flow and the "induced flow" due to the

presence of the wind turbine wake. The terms comprising the
undisturbed turbulent flow will be characterized in this chap-
ter. More precisely, for a horizontal axis wind turbine, the
aerodynamic forces are determined by the instantaneous air veloc-
ity distribution along each of the turbine blades. These blades,
in turn, are rotating through the turbulence field which is being
convected past the turbine rotor disk. It is thus necessary to
characterize the wind turbulence field by a three-dimensional
velocity vector which varies randomly with time and with the
position in space. A complete statistical description of this
turbulent velocity field requires the determination of all possi-
ble joint probability distributions between different velocity
components at different times and positions in space. Clearly,
such a description will not be possible without considerable
simplification. The validity of the resulting simplified model
will depend upon a compérison of the characteristics predicted by

the model and those observed in the atmosphere and more



importantly, those observed in actual wind turbine field tests
(1). In this chapter we will describe this model. A more
detailed description of the analytical steps used to arrive at

the simplified model is presented in reference (2).

1.2 Model Assumptions and Approximations

The wind turbulence inputs used in this report are deter-
mined in three basic modeling steps. First, the turbulent veloc-
ity field is characterized by a model which gives the correla-
tions between velocity components at different spatial points and
at difierent time instants. Second, the velocity field is
approximated in the rotor disk by a series which varies with
time. A correlation model for these components is derived from
the original field model. Third, simple rational spectral repre-
sentations are determined:which approximate the derived correla-
tion model. A brief discussion of the assumptions and approxima-
tions used in these steps follows.

The turbulent velocity field is assumed to be stationary,
locally homogeneous, isotropic (3), and satisfying Taylor's fro-
zen field hypothesis (4). The Von Karman model (5) is used to
characterize tﬁe correlations between velocities of spatially
sebarated points. This model is widely used in aircraft turbu-
lence response analysis (6,7). However, due to the anisotropic
nature of the atmospheric boundary layer, the use of the model
for wind turbines can bé questioned. Frost (8) has estimated

that the deviation from isotropy is of secondary importance.




However, one should not rely heavily on design calculations which
use this model until more complete experimental verification is
available.

Once the correlation model of the turbulence field is estab-
lished, the velocity is approximated over the rotor disk by a
series which varies with time. This is done to simplify the
staﬁistical nature of the random field to that of several sto-
chastic processes.

In order to further simplify the model, the power spectral

densities are approximated by a simple rational form, and non-

dimensional parameters are determined which match the low fre-

quency power spectral density and the total variance for the

computed spectra and the rational approximation. The rational
form chosen corresponds to an exponentially correlated random
process which is particularly easy to handle both analytically
and in simulation. The following section describes the resulting

model in more detail.

1.3 Series Approximation to the Turbulent Velocity Field
The longitudinal component of turbulence (normal to the

rotor disk) generally provides the most important aerodynamic
effect on wind turbines (5). 1In order to provide an accurate
determination of these effects, it is proposed to approximate the
variation of the velocity across the rotor disk by a series which
includes up to quadratié terms. Using Taylor's frozen field
hypothesis relating the spatial and time dependency, the velocity

across the rotor disk can be written as follows:




vy(x, —th, z2) = Vy,o(t) + Vy'z(t)z + Vy'x(t)x
2 1 _2 2 1 .2
+ Vy,zz(t)(z -7 R+ Vy,xx(t)(x - 3 RY)
+ Vy'zx(t)zx (1.1)

where vy(x,y,z) is the velocity component depending on the x,y,z
coordinates shown in Figure 1.1 and R is the radius of the rotor

disk. The series of functions:

fo =1
f1 =2z
f2 = X (1.2)

were found by choosing polynomials with successively higher
powers of x and z and enforcing conditions of mutual orthogonal-

ity over the rotor disk, i.e.,
] fj(x,z)fk(x,z) dA = 0 ; for j # k (1.3)

Thus, the least-square functional approximation (i.e., the terms
Vy,... which minimize the difference between Vy and the approxi-
mate value) is given using the usual generalized Fourier expan-

sion formulas (6):




- 2

V.0 [(l)vy da/[ (1)° aa

v = [ 2zv, da/f z? aa

Yrz y

- 2

Vox = [ x Vg da/[ x° 4aa (1.4)
2 _ 1.2 2 _ 1 2,2

vy,zz=f(z -ZR)vydA/f(z - g R)"aa
2 _1 .2 2 _1 02,2

vy’xx=f(x -ZR)vydA/f(x - T R7)" aa

: 2
Vy,zx [ zx vy da/f (zx)© aa

Note that the time argument has been dropped for these equa-
tions. It should be understood that these equations apply at any
instant of time. Now, when the statistics of the terms Vy,zz and
Vy,xx are considered it is found that correlation between the
terms exists which complicates the statistical modeling. To
alleviate this problem, linear combinations of the last three

terms are defined so that the resulting six terms are all mutual-

ly uncorrelated. Thus, we define

= 1
Vy,rr T 2 (Vy,zz * V&,xx)
v =L (v -v. ) (1.5)
Yy rc 2 Y,22 Y XX .
=1
Vy,rs 2 vy,zx

Converting to polar coordinates and substituting Egs. (l1.5) into

Egqs. (1.1) and (1.4) gives the following form for the series



= + v + i
vy Vy,o V.2 r cosy Vy,x r siny
2 1 .2 2
y,rr(r 7 R ) + Vy,rc r° cos2y
+ v r? sin2y (1.6)
Yy LS
where the six relations:
1 fR f2w
v = v rdrdy
YO ﬂRz o o y
4 IR IZN
v = — v _(rcosy)rdrdy
Y2 nR4 o o 4
R 2n
Vo ok = 44 [ [ v (rsiny)rdrdy (1.7)
Y. TR o o Y
R 2w
12 2 1 .2
\Y = / [ v (£° - 5 R®)rdrdy
Yirr o 850 o Y 2
R 2%
6 X2
v = [ [ v (¥cos2y)rdrdy
y.rc % o o y
6 (R 2T 2 .
Vors = 6 [ vy(r sin2y)rdrdy

R~ o (o]

Given a three-dimensional correlation model for the velocity
component Vg it is then possible to utilize Egs. (l1.7) to com-
pute the correlation statistics or power spectral densities for

the six "indicial" velocity terms: Vy,z' etc. Before

Ve .0
proceeding to do this, however, we will first consider the con-
vergence properties of the series.

In general, the convergence of a series based on orthogonal

functions requires that the true function be square integrable




over the domain of interest (7). The turbulent velocity compon-
ent, Vyr is a random variable depending on space and time, so
that the usual Riemann integration does not apply. The theorems
of stochastic integration (8) can be used instead, and the con-
cept of convergence of the series can be defined so that the
variance of the difference between the true value and that given
by the truncated series goes to zero as more and more terms in
the series are included (9). Since the variance of this approxi-
mation error is positive over the whole domain, a necessary and
sufficient condition for convergence of the series is that the
error variance, averaged over the domain, goes to zero. This
averaged error variance is then a measure of the convergence
properties of the series. Table 1.1 shows the relative approxi-

mation error for the truncated series defined by Eg. (1.6).

e, = ;_%; [ E[(v, - Gy)z] aa (1.8)
where Gy = truncated series representation of Vy
02 = variance of Vy
A = area of rotor disk.

The relative approximation error is seen to depend on the dimen-
sionless parameter R/L where R is the disk radius and L is the
turbulence integral scale. The computation was carried out using
the three-dimensional Von Karman correlation function for iso-
tropic turbulence (10).

Also shown in Table 1.1 are the relative approximation

errors when only the uniform term Vy,o is retained and when the




uniform and shear terms V and Vv are retained. These

y.,o' VY'Z' Y,X
relative approximation errors are designated ¢p and e;, respec-
tively. It can immediately be seen from the table that the quad-
ratic terms improve the approximation and that the approximation
is relatively poor when the disk radius approaches the turbulence
integral scale. It must be remembered, however, that the Von
Karman model does not account for the effects of high wave number
viscous dissipation and that the aerodynamic wind turbine rotor
forces are always given by spatial integrations which also pro-
vide low-pass wave number filtering. Thus, it is expected that
these aerodynamic forces will be computed more accurately using
the truncated series approximation than is indicated by the data
in Table 1.1.

Using uniform and linear gradient terms to approximate the
in-plane velocity components yields six turbulence input terms .
which vary with time. The complete turbulence model can then be

written in the following form:

Normal Velocity Components:

2 2 l .2
- = + + + - =
vy(x, v, tez) Vy,o Vy'z(z) + vy,x(X) Vy,rr(z X 5 RY)
v (22 - x%) ¢ v, __(22x) (1.9)
YIrc y,rs *
In-Plane Velocity Components:
(1.10)
vx(x,-vzt,z) = Vx,o S PRI PR e TP Tt

10




where the

time-dependent linear gradient turbulence parameters

are given by

_ 1
Yax ~ 2 (Vz,x - Vx,z)
Yox =7 (V3 x * Vg, 3)
Yzx = 7 Wz ,x X,z

1
€2x ~ 2 (vz.z - vx,x)

]
N~

2.4 (VZ,Z * vx,x)

There are twelve turbulence inputs which define the turbulence

model. These twelve terms are described in Table 1.2. Drawings

of typical fluid streamlines are shown in Figure 1.2 for the in-

plane gradient terms.

1.4 Filtered Noise Model For Turbulence

Each of these twelve terms are modeled as a stationary ex-
ponentially correlated random process, and they are assumed to be

uncorrelated with each other; although it can be shown using mass

continuity that Vy,o' €, and Vy,rr must be correlated. The g,,

and Vy,rr terms are relatively small compared with Vy,o' and are

not associated with large aerodynamic forces allowing this sim-

plication without introducing large error. This makes it pos-

sible to represent the turbulence inputs in the following way

= Ax + Bw (1.11)

Q1Q
i

11



where x = the vector of system states
w = the vector of independent white noise excitations
A,B = matrices.

The state correlation matrix is defined by
T
R(t) = E[x(t + 1)x (t)] (1.12)
and is computed from the differential equation (for r > 0)
d_Rr=ar, R(o) = X (1.13)
dt ! ‘

where the covariance matrix X (assuming zero mean) is given by

the solution to the Lyapunov equation (11)

AX + XAT + B stT =0 (1.14)

and S, is the diagonal matrix of noise power spectral densities.
Assuming that the turbulence terms Vy,o' Vy z+ etc. form the
’
state of a system in the form of Eq. (1.11), the correlation

matrix R(t) is given by the various cross correlations among the

individual terms. For example,

1 .2
E[Vy’z(t+r)vy'z(t)J = (;;5) f[E[vy(xl,-vw(t+1),zl)vy(xz,_th,zz)]

z,2, dA1 dA2 (1.15)

where the integration is over two disks of radius R. The sub-
scripts 1 and 2 refer to coordinates in the two disks, respec-
tively. Given the correlation matrix R(t), the matrix A can be

computed by integrating Eg. (1.13)

12

|



R(») - R(o) = A [ R(1) dr (1.16)
o .
or
-1
A = -X[s_] (1.17)
where s, = [ R(t) dt
o
X = R(o0)
and R(e) = 0.

The B matrix then must satisfy Eq. (1.14) so that

BS B =-(AX+XAT) (1.18)

If the noise terms are chosen (for simplicity) to have identical

power spectral densities, then

T

BBY = - £~ (ax + xaT) (1.19)

(nl*-‘

w
where S, is now the scalar PSD of each noise excitation. A
unique matrix B can be determined if it is also required to be
triangular, the result of which is called the Chloeskii square
root matrix (12).

In cases where R(t) is diagonal, considerable simplification
results. In this case, A and B will both be diagonal and the

resulting scalar equations apply:

]

Ay

"
«
|
=
b

B (1.20)

k S

where the subscript indicates the kth diagonal element.

13




It is convenient to choose the noise power spectral density

2

_ oL
w

thereby defining the noise vector to be dimensionless. Also,
dimensionless parameters can be chosen so that

L A
a, = - — (1.22)

3 for uniform terms

by = - for shear terms (1.23)
L

— for quadratic terms
w

These parameters only depend on the dimensionless ratio R/L,
where again R is the disk radius and L is the turbulence integral
scale. The previous work (13) gives a table of values for the a«
and b, parameters for the uniform and shear values, while the
quadratic terms are found in (14). In summary, then, for a given
turbine rotor size and turbulence scale, the a. and b, parameters
are given. Then using the steady wind speed V, and the turbulent
velocity variance 02, the dimersional parameters governing the
model are then computed.

In order to avc.d the inconvenient interpolation necessary
in evaluating the model-parameters when R/L is not a tabulated
value, a regression procedure was utilized to give a formula for
calculating the dimensionless parameters. For the uniform terms,

the following form was found to describe the data:

14




koRa(1 + k3R4)

where R, = % .

The parameters k;, etc. were determined as follows:
1. ki is given by the limit as R« » O, which is

either 1, 2 or v2Z.

2. Assuming ki, 0 and Ry is small, Eq. (1.24) can be

rearranged so that

2

a, Or by = ki = K, Ry + kk, Ry (1.25)

2

the parameters k, and k, can be found using stand-

ard linear regression using the data for small Rs.

3. The equation is then rearranged into the form
k4R*
ay Or by = k; + ¢ T—:—EZ§: + c,R (1.26)

and the parameters c; and c, are again determined

using standard linear regression with k; and L

fixed. These values then give the final values of

ko, and k3 parameters.
Table 1.3 shows the resulting regression parameters for the uni-
form turbulence terms including the in-plane velocity components
described in the previous work (14).

For the shear and quadratic terms a different form was found

to fit the data. 1In this case,

..k_
ay OF b, = kR, 24k, +k, R, (1.27)

15



The parameter k, was chosen to match the slope of a log-log plot
of ax or bx vs. Rsx. A value of kp; = 1 was found to gi§e good
results for as and ky; = 1/4 for bx. The remaining parameters,
ki, k3 and k4, were determined by standard linear regression.
Table 1.4 gives the resulting values for both the normal and in-
plane components for the shear terms and for the normal component
quadratic terms. Again the data for the in-plane terms were
taken from reference (15). In all cases the maximum deviation of
the data from the regression curves was less than 5%.

The model describing the turbulent velocity fluctuations can

be summarized in polar coordinates in the following manner

Normal Velocity

vy(r,tpW) =V + Vv 'x(rsinw) + Vylz(rcosw) + Vv r2 - R2/2)

Y0 Y err(

rzcoszw) + rzsin2¢) (1.28)

¥ Vy,rc( Vy,rs(

In-Plane Velocities

Ve Ertap) = Vo oo+ (Y, = Yuu) roosy + (e, - e, ) rsiny :
(1.29)
vlEetey) =V, o (Yz + Yy ) Esiny + (e, + €, ) rcosy
where from Figure 1.1, z = rcosy and x = rsiny.
Each of the turbulence terms (Vy,o' Vx,o""' Vy,rs) is
given by an equation of the form
v, | +av, = obuw (1.30)
dt Ye© Yeo©

16




where a and b are defined by

Vi
a = - 7 2, (1.31)
(Vi/L) by for uniform terms
b = (Vi/RL) b, for shear terms (1.32)
2,.2 .
(Vw/R L) b, for quadratic terms

where as and b, are given by the regression Egs. (1.24) or (1,26)

and depend on the ratio R/L. The white noise term w for each of

the twelve turbulence terms is an independent noise source with
2L .

PSD = %3— . A computer program which calculates the values of a
w

and b in Egs. (1.30) is given as the subroutine ATMOS in

Appendix C.

17
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Table 1.1. Relative Approximation Error for Series l
Approximation. .

R/L €0 €1 €9
.01 .044 .026 .020 l
.054 .135 .081 .060 l

.1 .201 121 .091
.3 .397 .250 .189 '

.5 .527 .348 .264
1.0 .724 .527 411 .
2.0 .889 737 .608 '
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Table 1.2. Description of Turbulence Input Terms.

Component Description
Vx,o uniform lateral or side component (in plane)
Vy,o uniform longitudinal component along mean wind
Vz,o uniform vertical component (in plane)
Vy,x lateral gradient of longitudinal velocity
Vy,z vertical gradient of longitudinal velocity
Yox swirl about mean wind axis (in plane)
Yzx . .

shear strain rates (in plane)

€2x
€,y dilation (in plane)
Vy,rr symmetric quadratic variation
Vy,ré quadratic with cos2y azmuthial variation
Vy,rs quadratic with sin2y azmuthial variation
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Table 1.3. Regression Parameters for Uniform Turbulence Terms.
ky k2 k3 kg
a* 200 2.894 -01383 2.049
Vz & Vx
b 2.0 3.290 +.0270 2.054
ax 1.0 1.713 -.0790 2.048
A"
Y ba 7.0 2.713 +.01591 2.051
22




Table 1.4. Regression Parameters for Shear and Quadratic
Turbulence Terms.

ky ko ks ky
a* -3266 1.0 05953 -01142
V, . & V
¥z Yrx ba .2811 .25 .6450 -.1500
an .4343 1.0 .9170 -.1532
y
zx by .2579 .25 .6467 -.1093
as .5342 1.0 1.276 -2.147
Jzx & €2zx
bw .1167 .25 .7733 -.1284
) as 1.654 1.0 1.069 +2.154
€
zx ba .3546 .25 .3951 +.2593
an 1.091 1.0 .0276 +.0686
v
y.rr by .5508 .25 .6473 -.1365
a* 10081 1.0 00279 +-0685
v &8V
y.re y.rs ba .3897 .25 .4567 -.0948
23
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Figure 1l.l1. Rotor disk coordinate system.

24

Rotor Disk

|



plane velocity




CHAPTER 2. NUMERICAL SIMULATION

2.1 Introduction

The objective of this chapter is to outline the development
for the digital simulation of the turbulence velocity terms. It
consists of two parts. First, generation of uniformly distri-
buted random numbers using the multiplicative congruential method
to approximate a white-noise time series. Second, generation of
the turbulence velocity terms by filtering the white-noise time
series to obtain the required shape of the spectral density to

produce the appropriate statistics for velocity fluctuaticns.

2.2 Generation of Unifo:r:ly Distributed Random Numbers

There are a number of techniques for generating random vari-
ables by‘digital computers for simulation purposes. Most of
these are reproducible and therefore the same sequence of numbers
will be generated over and over again giveh the same starting
input. It may be argued that such repeatable random numbers are,
in the true statistical sense, deterministic, and not random.
Since the digital computer consists of a finite, though large,
number of states, the use of an algorithm for the generation of
~random variables also implies that eventually the computer must
return to a state that had existed at the time of some previous
implementation of the algorithm which starts the repetition
cycle. However, as long as several conditions are met random
numbers generated by an algorithm on digital computers can be

used for simulation problems. Numbers that are generated by
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means of a stored algorithm are accordingly referred to as pseu-

dorandom,
Four criteria are usually employed to evaluate the suita-
bility of random number generation method:

1. length of the sequence of the generated random vari-

ates,

2. uniformity of amplitude-density spectrum,
3. small degree of autocorrelation, and

4. speed of computer execution.

The first criterion simply means that the period of repeti-
tion should be much larger than the intended simulation period.
The second implies that a uniform probability density is to be
obtained and the degree of the true uniformity is to be a measure
of quality. The third condition, if met perfectly, would mean
that zero correlation would result, corresponding to true white

noise. This is never the case and a reasonably small degree of

correlation {and consequent deviation of the power-spectral den-

sity from a flat spectrum of white-noise) should be considered

allowable.

However, the best criterion is the applicability of the

method used to the problem at hand. Methods that are very satis-

factory for some applications are found unsuitable when applied

to others., With these considerations in mind, the method to be

suggested here is the one known either as the multiplicative

congruential technique,- or as the power residue method. It

selects as the k&P pseudorandom number the remainder of the
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division of the product of a constant integer_c, and the (k-1)St
pseudorandom number by some second constant m. Denoting Xy the
kth variate so generated, the operation is described mathemat-

ically as follows:

X, = CX (mod m) (2.1)

k k-1

where the relation "x (mod m)" denotes the selection of the re-
mainder from the division of x by m. This technique is ideally
suited for implementation on a digital computer.

In practice it is recommended that the starting seed value,

X be some odd number less than m. For a binary computer, one

1

ol
selects m = where b is the number of bits per word. The value

of the constant ¢ should be of the order m and in the form

c =8k £ 3 for any integer k > 0

Thus providing a maximum period of 2(b-2)

pseudorandom numbers,
each between zero and 2P (1,2). Dividing the generated variates
by m gives the numbers between zero and one. This scheme is used
in subroutine RANDOM of Appendix C to generate a sequence of

uniformly distributed random numbers, starting with an arbitrary

selected seed value.
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2.3 Construction of a White-Noise Time Series
By definition a set of uniformly distributed random numbers

with a range of 0 to m will have a probability density function

given by
% 0 ¢ x<m
probability - -
density function ~ £(x) (2.2)
0 otherwise

The mean value and variance of the random variates may be com-

puted from its probability density function, Egq. (2.2), as

follows
- - ® - m
ug = EIX] = _af x £(x) dx = 3
(2.3)
2 2 2 m2
Ox = E[x ] - [E[x]] = 12

A random time series can be constructed using this set of
uniformly distributed random numbers. First, subtract the mean
value from each of the variates to obtain a zero mean process,
with all values between - % and % . Construct the time series,
x(t), by assuming that each of thé variates, x; occurs at inter-
vals At apart, and that the value of x(t) is a constant for the
period At. This produces a random time series x(t), which is a
piecewise continuous function of time as illustrated in Figure
2.1. 1If each number geﬂerated, X;, is statistically independent

and therefore uncorrelated with other numbers in the sequence,

then the autocorrelation function of x(t) can be determined as
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Rx(T) = B [x(t)x(t+2)]
At
= [ x(t)x(t + r)f(t)dt
o
- 2 _ 1=
R (1) = oy (1 %El) (2.4)

This autocorrelation function is plotted in Figure 2.2. Inevi-
table imperfections in the white-noise properties of the random
number generation process are evident by the presence of some
degrees of correlation for lrl < At.

The corresponding power-spectral density of x(t) may be

obtained using the above autocorrelation function as

A -iwT
S (w) = -Of Rx(r) e dr
= o2 at |Fpcosult (2.5)
5 (wat)

which is also plotted in Figure 2.2. 1If the interval, At is
sufficiently small (i.e., wAt << 1), relationship (2.5) becomes

approximately

2
At (wat)
Sx(w) . [l - —9'12—] (2.6)

Note that if At is selected small enough, with fespect to the

range of frequencies involved in the simulation problem, it may

be considered that the process takes place on the flat part of

the spectral curve near w = 0 (3). For this situation the signal

is approximately white-noise with a constant spectral density of
.

s (w) =.mlgt (2.7)
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2.4 Filter Model
It was shown in Chapter 1 that each of the twelve turbulence
terms in the turbulence model can be approximated by an uncorre-

lated stationary random process. Each term was given by an equa-

tion of the form

U+ au = bw (2.8)
where u = instantaneous value of one of the turbulence
terms, vy,o' vx,o’ ceey vy,rs
w = nondimensional zero mean white-noise with power

2
spectral density S, = 94k
w T g3
) W

¢ = turbulent velocity component variance
L = turbulence integral scale

V, = mean wind speed

R = rotor disk radius.

a and b are given by Egs. (1.31) and (1.32). The desired power
spectral density of the turbulence velocity term is

2
b Sy

. 2
S (w) = |G(juw) S — (2.9)
u ‘ J ‘ W a2+w2

where G(s) is the transfer function between the input white-
noise, w and output turbulence velocity specified by Eg. (2.8).
To generate a turbulence velocity term digitally let us
consider samples of the white-noise forcing function at discrete
times tgr tyr eeey tk' following the procedure outlined in (4),

the solution to Eq. (2.8) at time t, ., may be written as
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Cr+l
u(tk+l) = ¢(tk+1, tk) u(tk) + X i b¢(tk+l,r) wit) drt
k
and in an abbreviated form
Upel = $Yy + Wy (2.10)

¢ is the state transition matrix for the step ty to ty .y,
and ;k is the driven response at t, ., due to the presence of the
white-noise input during the (ty, t,,;) interval. Note that the
white-noise input required in the continuous model automatically
assures that Gk will be an uncorrelated white-noise sequence in
the discrete model (4).

From Eq. (2.8) the transition matrix is easily determined as

o, = e °F (2.11)

The variance of ;k is established by using the convolution inte-

gral as
2 -2 At At
o = EW°l = [ | g(u)g (V)R (u=-v) dudv (2.12)
w o o}
where gfl+] = unit impulse response
gtt) 4 1 (G(s)1 = pe72® (2.13)
and Rf[-] = autocorrelation function of the input white-noise.

The autocorrelation function of the input white-noise can be

established as

Rf[U‘V] = E(w(u)w(v)] = Swﬁ(u-v) (2.14)
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where S, is the power spectral density of the input. Substitut-
ing Egs. (2.13) and (2.14) in Eq. (2.12) and carrying out the
integration, the variance of Gk becomes
- 2
5 -2 b™Ss
2a

¥ (1 - e7238% (2.15)

If the generated random signal x(t) with zero mean and variance

2
oi = %f is used to approximate w(k) at the time intervals t1r to,

-ootk' and if
w(k) = cx(k) (2.16)

then the mean square of both sides is

2

E(w?] = c¢? E[x?]

2 _
- =c o
w

N

Substitute for oi = %7 and solving for c gives

6b2 S

¢ = [—52 (1 - eT2aAE)1/2 (2.17)
am

Substituting Eq. (2.17) in Eq. (2.16) and using the result and

Eq. (2.11) in Eq. (2.10), gives the turbulence velocity term at

tk+1 as

o) - gT2a8ty11/2 (2.18)

Ugsl = © u + {3 k
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If the range of the random numbers, m, is 1 then Eq. (2.18)

can be written as

—-aAt

-2aAty\1/2
U,y = € u *{—5— (1 - e )

X (2.19)

k

Evaluating the variance of the generic turbulence term from Eq.
(2.9) gives

2 _ 2 _ _ _ 1
o, = Elu”(t)] = R (1=0) = 5= _”f S, (w)dw
2
2 _ b Sw
%u 2a

Taking the mean square of both sides of Eq. (2.19) gives an iden-

tical result.
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Figure 2.1. Time series constructed from a sequence
of uniformly distributed random numbers.
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CHAPTER 3. DIGITAL COMPUTER IMPLEMENTATION

3.1 Introduction

.In this chapter the computer code for digital simulation of
turbulence velocity components is discussed. The program is
written in Fortran V on the CDC Cyber 170/720 series. It is
designed in a block-structured form so the various tasks per-
formed within the program are essentially separate routines and
are linked together by an executive main program. It is run
interactively but can be run in a batch mode with some prior

preparation of response data.

3.2 Input Data

A iist of the input variables is given in Table 3.1. The
user has the opportunity to change any of the input variables
listed in Table 3.1 at execution time. When a run is completed
the program allows the user to either end execution with the
current data set, recycle the current data file with different

values for the input variables, or employ a new data file.

3.3 Computer Algorithm for Turbulence Simulation
It was shown in Chapter 1, Egs. (1.28) and (1.29), that

turbulence velocity components can be given in polar coordinates

in the following form:
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Normal Velocity

= + v i +
vy (r,¢,t) Vy,O ¥ X (rsiny) Vy,z (rcosy)

2
(r2 - %—) + (r2cos2y)

Vy,rr Vy,ro

2 .
+ vyors (r"sin2y) (1.28)

' In-Plane Velocities

[
<

Ve (r,y,t) (?zx - sz) rcosy + (sz - ezx) rsiny

v, (reyst) =V, o+ (Y, * Y,) Tsiny + (e, + €, ) rcosy

v eeer V

y,rs) is given by

where each turbulence term (Vy'

o! "x,o0!

an equation of the form

[V

] + av = bw
Yoo 4

'.

2

with a and b given by Egs. (1.31) or (1.32).

The simulation routine SIMULX generates the appropriate a
and b coefficients based on the given input data and the curve
fitting contained in subroutine ATMOS. The procedure for obtain-
ing these coefficients is described in Section 1, énd the regres-
sion method is described in Appendix A. Next, the subroutine
TURBS actually simulates the velocity fluctuations by first call-

ing RANDOM to generate a white noise time signal as discussed in
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Section 2.3. This signal is then filtered using Eq. (2.16) to
obtain the twelve turbulence parameters of Table 1.2, Vg,0’ Vy,o'
Vz,00 Vy,k' etc. The values of these twelve turbulence param-
eters are then substituted into Egs. (1.28) and (1.29) to obtain
the resulting velocity fluctuations, v, Vyr and v,, at any
desired radial station for the current time. As the procedure
marches forward in time, the blade moves to a new azimuth angle
and subroutine TURBS is called again to repeat the procedure. A
flow chart of this process is shown in Figure 3.1 for the execu-
tive program SIMULX, and Figure 3.2 shows the flow chart for sub-
routine TURBS.

The number of points along the blade at which turbulence
velocity is evaluated is given as the parameter, NPTS, in the
program SIMULX, and can be easily changed. The turbulence veloc-
ity components then are computed at equally spaced points along
the blade from an initial radius to a final radius which the user
specifies. For the results presented here, only one radial posi-
tion at the tip was considered (NPTS = 1). As much as possible,
the code has been written to contain its own documentation
through extensive use of comments within the program.

Appendices C through F include a complete program listing, a
sample input data file, a procedural example of the interactive
features, and the results of the sample run as observed from the

tip of a Mod-0A wind turbine blade.
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3.4 Tool Kit for Signal Analysis

Analysis of random signals requires some basic mathematical
tools. There are two general methods of describing random sig-
nals mathematically. The first, and more basic, is a probabil-
istic description in which the random quantity is characterized
by a probability model. However, it tells very little about how
the random signal varies with time, or how the amplitude varies
as a function of frequency.

For this work dealing with atmospheric turbulence it is
helpful to use some of the typical statistical measures to char-
actrize the wind signal using the mean, variance, correlation
function, and spectral density. These measures allow the signal
which is. being simulated to be compared with various theoretical
models and with experimental data. This is essential because
when comparing wind turbine responses generated using a simulated
wind with responses obtained from field test measurements the
comparison must be made for the "same" atmospheric conditions.
This means that the mean, variance, and spectral density for the
simulated wind should match those of the real atmosphere during
the field test period. The tools for computing these statistical
parameters are discussed in this section.

Subroutine MEANVAR estimates mean and variance of a time
series. Since each of the turbulence velocity components is
computed by low pass filtering of a uniformly distributed white
noise time series, it is’expected that the resulting turbulent

velocity fluctuations will have nearly a Gaussian distribution
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(1), To estimate the actual distribution subroutine ROB con-
structs a frequency histogram which can be compared with the
standard normal distributior.

Subroutine PSD generates spectral density estimates of the
generated velocity signals. It uses a fast Fourier transform
(FFT) algorithm to calculate discrete Fourier transforms (DFT)
(2). A cosine tapered data window is used to smooth the data at
each end of the record before it is analyzed (which has the
effect of sharpening the spectral window). In order to improve
the accuracy of the results, the signal is broken into a number
of segments and the spectral estimates for each segment are com-
puted and then averaged for all segments at each frequency. A
more detailed discussion of the digital signal analysis is given
in Appendix B.

In order to obtain accurate estimates of the spectral den-
sity, relatively long sequences of random velocities are
needed. The length of each of the time series segments in the
code is set by the parameter LSPECT, which has been arbitrarily
set equal to 128 in a parameter statement. It can easily be
changed but must always equal an integer power of 2 for the FFT

algorithm to work properly. The user specifies the number of

random velocities generated as the input parameter, NRVELOC. The

user can choose any size up to 6500, the dimension size of the
array. Note that if NRVELOC is not evenly divisible by the seg-
ment length, LSPECT, then an appropriate number of zeros will be

added to each time series. This might make the length of the
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time series exceed the declared array size for the velocity com—
ponents. To aveid this, NRVELOC should be kept smaller than the
velocity time series array size minus LSPCT, (currently NRVELOC <
6500 -128). Because of larger array sizes it might not be fea-
sible to run this program interactively on some computers.
Therefore, modification may be required depending on the needs

and resources available to the user.
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Table 3.1. List of Input Variables.

CONST

DELTAT

DIVIDER

SEED

NRVELOC

OMEGA

OMEGAZ

ROTR

RRATIO

TI

TL

VRANGE

constant coefficient in the power residue algorithm
(subroutine RANDOM) for generation of uniformly
distributed random numbers

time step interval for generation of random
velocity components (sec)

module used in function (mod) (¢) in the power
residue algorithm (subroutine RANDOM)

initial random number used in the power residue
algorithm (subroutine RANDOM)

number of elements of random turbulence velocity
component sequences

rotor speed (rpm)

initial angular orientation in the rotor disk plane
(deg)

rotor radius (feet)
ratio of radial position to blade radius
turbulence intensity (%— in percent)

w
turbulence integral scale (feet)
number of standard deviations displayed for the
turbulent velocity probability density function
(usually selected to be 3)

mean wind velocity (mph)
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PROGRAM SIMULX

( START )

INPUT

Generate Atmospheric Coefficients

CALL ATMOS

Generate Random Velocities

Loop: 1 - NRUELOC

N
/

Calculate Mean and Variance

CALL MEANVAR

CALL TURBS

Evaluate Probability Density

CALL PROB

Calculate Spectral Density

CALL PSD

CALL PLOTLOG

A New Data

Figure 3.1.

File

( stTorP )

Flow chart of the program SIMULX.

46

B T B



SUBROUTINE TURBS

( START )

Construct Filter Parameters
Loop: 1, NWCOMP

o]

Construct Turbulence Velocity
Terms Vy,o, Vx,o, e
by the Corresponding Filters

\ LOOP: 1, NWCOMP

T

Compute Turbulence Velocity Components,

v v at Different Radial Positions

x' vy' z’
for Current Azimuth Angle and Time Interval

LOOP: 1, NPTS

.L/

( RETURN )

Figure 3.2, Flow chart of subroutine TURBS
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CHAPTER 4, SIMULATION RESULTS

4,1 Introduction

This chapter presents some typical results obtained using
the computer code to simulate the turbulence inputs for wind
turbines. Simulation results are presented for two wind turbine
sizes. The first turbulence simulation is for the Mod-0A, 200 kW
wind turbine, which has a rotor diameter of 125 ft. The spectral
density of the simulated turbulence is compared with field test
data taken from the vertical plane array experiments of George
and Connell (1), for similar wind conditions. 1In addition, the
results are compared with the theoretical Von Karman spectra for
the atmospheric boundary layer. The second simulation is for a
Mod-2, 300-ft diameter wind turbine. In this case, there is no
appropriate test data which can be used for comparison, but a
comparison is made with the Von Karman spectrum for the longitu-

dinal velocity component.

4,2 Comparison of Simulations
Figure 4.1 shows the simulation time series of the longitu-

dinal velocity component, V as observed from the tip of a

v’
rotating Mod-0A blade. 1In this simulation, the tip radius was

taken as 62.5 ft and the rotor speed was 40 rpm. In addition,

the parameters used for the turbulence simulation where

vV, = 26.25 ft/s, ¢/V, = 0.10 and the turbulence integral scale,

L, was 400 ft. In Figure 4.1, the mean wind speed has been

removed. Figure 4.2 presents the spectral density for the time
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series shown in Figure 4.1. The simulated spectrum clearly shows
the spikes at 1 and 2 cycles per rotor revolution that are the
result of rotation of the blade through the wind turbulence
field. However, the simulation results show no spikes higher
than 2 cycles per revolution because the model only allowed for
velocity fluctuation harmonics up to sin2¥ and cos2Y as indicated
by Eq. (1.28). The data taken from the vertical plane array is
plotted showing harmonics up to 3 cycles per rotor revolution,
but higher harmonics are present in the original presentation by
George and Connell (1). The simulation results show considerably
greater spectral energy in the frequency range of .1 to .3 hz
than the VPA results. This is probably because the a* an b*
coefficients used to generate the simulation were selected so
that the'Von Karman spectrum would be approximated in the low
frequency range. As is shown in the figure, the comparison with
the Von Karman spectrum in this frequency range is quite good.

It would be possible to more closely approximate the vertical
plane array data by adjusting the a* and p* coefficients for the
Vy,o term of Eg. (1.28). In addition, it would be possible to
add additional harmonics to the model in order to obtain the 3
and 4 cycles per revolution spectral spikes, but that would in-
volve a significant effort. It is hoped that some experience
with the implementation of the existing model in a dynamics code
could be obtained, before attempting to improve the simulation,

and account for these additional effects.
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Figure 4.3 shows the probability density function for the
time series of the Vy turbulent velocity fluctuations. As can be
seen from the figure, the simulated velocity fluctuations closely
approximate a Gaussian distribution.

Figure 4.4 is a spectral density plot for the vertical
velocity component, V,, as provided by the simulation. The Von
Karman spectrum for this turbulence component is also provided
for comparison. The simulation is for the case where the turbu-
lence is observed from the tip of a rotating Mod-O0A blade.
Whereas the Von Karman spectrum plotted is for a point fixed in
space. The simulated spectrum shows a single spike at a frequen-
cy of 1 cycle per rotor revolution. Theoretically there should
be many of these spikes each at a multiple of the rotor blade
passage frequency. However, the simplified simulation model,

Eq. (1.29), for the in-plane velocity components includes only
the first harmonic. WNo field data is available for comparison of
the in-plane velocity components. The simulation spectrum for
the lateral velocity component was virtually identical to the
results for the vertical component and therefore has not been
presented. Figure 4.5 shows the probability density function for
the time series of the V, velocity fluctuations, and the figure
shows the distribution to be approximately Gaussian,

Figure 4.6 is the spectral density plot of the longtidinual
velocity component, Vy, for a simulation run for a Mod-2 sized
turbine. In this simulation, the mean wind speed was

Vg = 32.15 ft/s, 6/V, = .061 and the turbulence integral scale
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was taken as 500 ft. The velocity field was simulated at two
radial locations along the rotor blade. One was at 30% span and
the other was for the 70% span location. This illustrates one of
the convenient features of this turbulence model. At each time
step, the velocity fluctuations at all radial locations are
obtained simultaneously, as can be seen by the form of

Eq. (1.28). Figure 4.6 includes the Von Karman spectrum for
comparison. Figure 4.7 shows a probability density plot for the
velocity fluctuations at 70% span. Unfortunately, there is no
appropriate test data with which to compare these simulation

results a the Mod-2 sized turbine.

4.3 Concluding Remarks

The authors offer the following conclusions and remarks on

the basis of the work presented in this report:

1. The results presented here show that the turbu-
lence simulation model does a reasonable job of
representing many of the features of atmospheric
turbulence.

2. The turbulence simulation model presented here
does not model the spectral spikes in the wind
input above 2 cycles per rotor revolution. If
these spectral spikes at higher harmonics turn out
to be important for cyclic load prediction then
this model will be incomplete. It should be noted

that this model does contain some spectral energy
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at the higher harmonics of rotor speed; it is the
effect of rotating through the turbulence struc-
ture that is missing at the higher frequencies.

3. The great advantage of this model is its simple
structure and fast computation speed. This simu-
lation model will not significantly increase the
complexity of a wind turbine dynamic model.

The authors hope that fn the near future, this model will be used
to generate inputs for a structural dynamic model, so that its
usefulness in predicting cyclic loads can be assessed. Ability
to predict cyclic loads reasonably well for a small computational

cost is the ultimate goal, and this simulation approach seems to

offer promise of achieving that goal.
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APPENDIX A. LINEAR LEAST-SQUARES REGRESSION (1)

For the general regression problem, the form of the relation

y = f(x,a) (A.1)
where: X = independent variable
a = vector of parameters
y = dependent variable

is known and it is desired to determine the vector of parameters,

a, when several data points (i, yi) are given. 1In the case when

the parameters appear linearly, i.e.,
y = alfl(x) + azfz(x) + te. + anfn(x) (A.2)
the data parameters form a set of linear equations given by

n
I £5(xa; =y, i=1,..0m (A.3)

j=1

When there are more data points than unknown parameters
(i.e., m > n) the equations are overdetermined and it is unlikely
that all equations can be satisfied exactly. When m < n the
equations are underdetermined and many different sets of param-
eter values can be found which fit the data exactly. To deter-
mine a reasonable solution to the problem, the parameters can be
chosen to minimize the sum of the squares of the residuals, i.e.,

Min
a

ne-138

(y; - f(xi,a))2 (A.4)

i=1




It can be shown (2), in the case when the data are given

exactly by

y; = F(x,a,) + e (A.5)

1

where ax are the true parameters and e; are mutually independent
random errors which are normally diétributed with zero mean, that
the least-squares solution is equivalent to choosing the most
probable values of a, given the data (assuming no prior knowledge
of a). In cases when there are more parameters than data (i.e.,
m < n) it is reasonable to set the last n-m parameters to zero
then to determine the remaining m parameters which fit the data
exactly.

In order to find the least squares solution, it is conven-

ient to put the problem in matrix form

y - Fa = e ' (A.6)
where
fl(xl) fz(xl) cee
F = £, (%, *
Yy
Y = °
Ym
e = residual vector (dimension m)
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The necessary conditions for the minimum are easily found by

differentiating to be

2(3¢)T e = 0 (A.7)
or using Eq. (A.6) and the definition of F

2(-F) T (y-Fa) = 0
or, finally

(FTE‘)a = Fly ' (aA.8)

The solution is unique when the matrix FIF is nonsingular.

Instead of solving Eq. (A.8) directly for

a = (FTr) LTy (a.9)

Golub (3) suggested using the Householder (4) decomposition of

the matrix F, i.e.,
F = QR (A.10)

where Q is orthogonal and R has all elements below the diagonal

equal to zero. Thus, Eq. (A.8) can be rewritten as

@r)T(er)a = (or)Ty (A.11)
or since Q is orthogonal (i.e., Q-l = QT)
(R'R)a = R'Q'y (A.12)




for the case when m > n, R is of the form

where U is upper triangular, and the coefficient matrix for a

becomes
RIR = UTU (A.13)

Now, let the right hand side be partitioned so that

Q'y = e (A.14)

Since U and F have the same rank = n, Eq. (A.l14) becomes
Ua = 2y (A.15)

The solution to Eq. (A.l5) involves only a simple back substitu-
tion since U is triangular.

This procedure has been implemented in a standard library
subroutine supplied by the IMSL (5) and is utilized to compute

the regression parameters in the turbulence model.

A-~4
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APPENDIX B. DIGITAL SPECTRAL ANALYSIS

The power spectral density of a stationary random process

x(t) is defined as

s (w) = [ R (1) et qr (B.1)

~-a0
where Ryt 1) is the autocorrelation function of x(t) given by
R (1) = E [x(t)x(t+1)] (B.2)

If the random process x(t) is sampled at intervals A (constant)
then the discrete value of x(t) at time t = raA is written X, and
the sequence {xr}, r=0,1, 2, ..., is called a discrete time
series.‘ The objective of time series analysis is to determine
the statistical characteristics of the original function x(t) by
manipulating the discrete time series {x.}. The main interest is
the frequency composition of x(t). For this, the power spectral
density of x(t) is estimated by analyzing the discrete time
series obtained by sampling a finite segment of x(t). Discrete
Fourier transform (DFT) of a time series {x,.}, r = 0, 1, 2, ...,
(N-1) is defined as follows:

. 21k
-1 -i(55)r
2 xr e k=20,1, 2, ..., (N-1) (B.3)

and the inverse discrete Fourier transform (IDFT) is given by

2nr

X, = ) X, e1( N

)k r = 0' l’ 2’ e ooy (N-l) (804)

B-1




where the range of the Fourier components X, is limited to k = 0

27k _ 27k
T ~ Na

where T = NA is the finite segment of the sampling function x(t)

to (N-1l) corresponding to harmonics of frequency w, =

and A is the sampling interwval,
It can be shown (1) that the spectrum of x(t) can be esti-

mated by §(mk) as follows
S(mk) = TSk (B.5)

where Sk is the DFT of the discrete autocorrelation Rr which for

two random processes x(t) and y(t) and their corresponding

sampled time series {x_} and {(y_.} is g

np Yr iven by

r = 0' 1' 2' o o0y (N-l) (B.G)

Substituting for x,. and y,. from (B.4) it is possible to demon-

r

strate that Sk can be obtained as

L}
<
*

S X

xxk k 'k

= Y*
sxyk xk Yk
(B.?)
= *
Syxk Yk xk
= *
Syyk Yk Yk

where the complex conjugate of X and Y are denoted at X* and Y*.
The fast Fourier transform subroutine listed in Reference
(1) is used to evaluate the DFT's of the time series. The FFT

works by partitioning the full sequence {xr} into a number of

B-2




shorter sequences. Instead of calculating DFT of the original

sequence, only the DFT's of the shorter sequences are computed
and then averaged to yield the full DFT of {x,.}. A cosine data
taper function is used to smooth the data at each end of the data
record before carrying out the DFT to improve the shape of the

resulting spectral density (2,3).

\
e W o Oy Ny W= Wy G By a5 TS By Wy an iy o Y = e

B-3
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APPENDIX C, COMPUTER CODE LISTING

Listing of the program SIMULX.
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PROGRAM SIMULX (INPUT,OUTPUT)

Cccccccecceeccececccececccccceccececcceeeececcecccccecccccceccccccccccececcececcee

a0 OoOaaaQQaQQaaan

PROGRAM SIMULX GENERATES THE WIND TURBULANCE AT POINTS ALONG THE
BLADE IN THE ROTOR DISK AND FINDS THE FREQUENCY SPECTRUM OF EACH
VELOCITY COMPONENT. A UNIFORRMLY DISTRIBUTED RANDOM NUMBER IS
GENERATED TO SIMULATE WHITE NOISE. EACH TURBULENCE VELOCITY TERM
MODELED AS A STATIONARY RANDOM PROCESS GIVEN BY AN EQUATION OF
THE FORM

D(U) / DT+ A% U=z=B#*YW

WHERE W : NON-DIMENSIONAL ZERO MEAN WHITE NOISE WITH POWER
SPECTRAL DENSITY SW.
A; : ATMOSPHERIC PARAMETER CONSTANTS.
B
SOLUTION TO THIS EQUATION FOR A DISCRETE TIME WHITE NOISE CAN BE
WRITTEN AS

U(K+1) = PHI(K,K+1) ®* U(K) + W(K)

WHERE U(K); ¢ SOLUTIONS AT TIMES T(K); T(K+1)
U(K+1)
PHI(K),K+1) : TRANSITION FUNCTION FROM TIME T(K)
'TO T(K+1)
W(K) : DRIVEN RESPONSE AT T(K+1) DUE TO THE

PRESENCE OF WHITE NOISE INPUT DURING TIME
T(K), T(K+1) INTERVAL. NOTE THAT W(K) IS
A WHITE NOISE RANDOM SEQUENCE.
SUBROUTINE ATMOS GENERATES THE ATMOSPHERIC CONSTATNTS PARAMETERS
A'S AND B'S. SUBROTINE RANDOM GENERATES A SEQUENCE OF UNIFORMLY
DISTRIBUTED RANDOM NUMBERS WHILE ROUTINE MEANVAR CALCULATES MEAN
AND VARIANCE OF TIME SERIES.
SUBROUTINE PSD IS USED TO GENERATE THE SPECTRUM OF THE GENERATED
SIGNALS. STANDARD PLOT OF RANDOM VELOCITY VS TIME IS OBTAINED
USING SUBROUTINE PLTSTND. SUBROUTINE PLTLOG PROVIDES LOG-LOG
PLOT FOR SPECRUM VS FREQUENCY.

NOTE: IF THE NUMBER OF GENERATED RANDOM VELOCITY
COMPONENTS, NRVELOC, IS NOT EVENLY DIVISIBLE BY
LENGTH OF THE SPECTRUM, LSPECT, THEN NRVELOC
MUST BE SMALLER THAN THE DECLARED SIZE OF RANDOM
VELOCITY COMPONENT ARRAYS AT MOST BY LSPECT SO
AFTER PADDING THE TIME SERIES IT IS NOT OVER SIZED.

Cc-2
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" c
C LIST OF ARGUEMENTS: c
C CONST : CONSTATNT COEFFICIENT IN THE POWER RESIDUE ALGORITHM c
c (SUBROUTINE RANDOM) FOR GENERATION OF UNIFORMLY c
C DISTRIBUTED RANDOM NUMBERS C
C DIVIDER : MODULE USED IN FUNCTION MOD(.) IN SUBROUTINE RANDOM c
C SEED : INITIAL RANDOM NUMBER USED IN THE POWER RESIDUE c
c ALGORITHM, SUBROUTINE RANDOM "
C NWCOMP : NUMBER OF TURBULENT VELOCITY TERMS IN THE ATMOSPHERIC C
c MODEL c
C NRVELOC : NUMBER OF ELEMENTS OF RANDOM TURBULENT VELOCITY C
c COMPONENTS SEQUENCE c
C NPTS : NUMBER OF POINTS ALONG THE BLADE AT WHICH TURBULENT c
c VELOCITY IS EVALUATED C
C NBINS : NUMBER OF SUBINTERVALS ON THE POSITIVE VELOCITY c
c AXIS FOR DETERMINING PROBABILITY DISTRIBUTION c
C PROBDIS : ARRAY OF SIZE (2*NBINS) WHICH CONTAINS PROBABILITY c
C DISTRIBUTION OF THE TURBULENT VELOCITY COMPONENTS C
c IN EACH SUBINTERVAL(BIN) c
C VRANGE : MAXIMUM VALUE OF TURBULENT VELOCITY AS AN INTEGER c
c MULTIPLE OF ITS VARIANCE, SUBROUTINE PROB c
c C
CCCCCCCCCCCCCCCCCCCCClCCCCCCCCCCCccecccecccccccececccccecececcccceccceceee

INTEGER NWCOMP,NPTS,LSPECT,LP2,NRVELOC

INTEGER NBINS,NLABEL ,CONST

PARAMETER (LSPECT=128,LP2=T)

PARAMETER (NWCOMP=12,NPTS=1,NLABEL=1,NBINS=16)

REAL R,ROTR,OMEGA,OMEGAZ ,DELTAT,DIVIDER,VRANGE

REAL VX(6500),VY(6500),VZ(6500),Y(6500),%(200)

REAL PROBDIS(2*NBINS)

REAL XX(NPTS),YY(NPTS),ZZ(NPTS)

REAL A(NWCOMP),B(NWCOMP),CC(NWCOMP), DD(NWCOKP)

REAL PSY(LSPECT/2+1),F(LSPECT/2+1),SOUT(LSPECT/2+1)
COMPLEX ZY(LSPECT)

DOUBLE PRECISION SEED

CHARACTER *7 FILEIN, FILEOUT, LABEL(NLABEL)#40
CHARACTER *2 ANS1, ANS*{

COMMON /TURBINE/ OMEGA ,OMEGAZ ,ROTR

COMMON /WIND/ TL,TI,SW,VW

COMMON /ATMOS/ A,B

COMMON /RAND/ CONST, SEED, DIVIDER

NAMELIST /INDATA/ CONST,DELTAT,DIVIDER,SEED,NRVELOC,OMEGA,
& OMEGAZ ,ROTR, RRATIO, TI,TL,VRANGE, VW

L
® ... CONVERSION FACTORS ....
&

PI = ACOS(-1.)
CDEGRAD = PI/180.
CRPMRPS = 2.*P1/60.

C-3




CMPHFPS = 5280./3600.
¢
* ... INTERACTIVE : SELECT INPUT AND OUTPUT FILES,
¢ OPEN FILES, READ DATA FILE. USE NAMELIST.
881 PRINT ®, ' !
PRINT #, 'ENTER NAME OF THE NEW DATA FILE '
READ '(A)', FILEIN
OPEN (5,FILE=FILEIN)
PRINT #, ' !
PRINT *, 'ENTER THE NAME OF OUTPUT FILE '
READ '(A)', FILEOUT
OPEN (6,FILE=FILEOUT)

ces e INPUT LU

««.. READ THE PLOT LABELS ....

DO 100 I=1,NLABEL
READ (5,'(A)') LABEL(I)
100 CONTINUE
READ (5,INDATA)
REWIND (5)
. CLOSE (5)

* seee PRINT ECHO OF INPUT DATA sece
*
1 PRINT #, ' !
PRINT 5, 'CONST =', CONST
PRINT 6, 'DELTAT =', DELTAT , '(SEC) !
PRINT 7, 'DIVIDER =', DIVIDER

PRINT 7, 'SEED  ='. SEED

PRINT 5, 'NRVELOC =', NRVELOC

PRINT 6, 'OMEGA =', OMEGA , '(RPM) '
PRINT 6, 'OMEGAZ =', OMEGAZ ., °'(DEG) '
o R
PRINT 6, 'TI = 11 , '(PERCENT) '
PRINT 6, 'TL =) TL '(FEET)
PRINT 6, 'VRANGE =', VRANGE )
PRINT 6, 'WW =W , '(MILES/HR)"'

5 FORMAT (1X,A15,18)

6 FORMAT (1X,A15,F12.3,T35,A15)
7 FORMAT (1X,A15,E20.13)
*
®
9

.-+« INTERACTIVE: CHANGE DATA VALUES & REPEAT ECHO CHECK OR CONTINUE ..

PRINT #, ' !
PRINT #, 'DO YOU. WANT TO CHANGE ANY VALUES ? ENTER(Y OR N)'
READ '(A)', ANS
IF (ANS .EQ. 'Y') THEN
PRINT #, ' !



PRINT #, 'TO CHANGE VALUES, LEAVE COLUMN 1 BLANK AND TYPE'
PRINT ®*, '$INDATA FOLLOWED BY VALUE ASSIGNMENTS IN THE FORM:'
?

PRINT #, 'NAME = VALUE, NAME = VALUE ,..., $'
PRINT #, 'NOTE : COLUMN 1 MUST BE BLANK; TERMINATE WITH § '
READ INDATA
PRIN. #, ' !
GO TO 1
ENDIF
*
o ..... UNIT CONVERSIONS : (RPM) TO (RAD/SEC); (DEG) TO (RAD) ....
* (MPH) TO (FT/SEC)
[ )
OMEGA OMEGA * CRPMRPS

OMEGAZ
W

OMEGAZ ® CDEGRAD
VW ® CMPHFPS

WRITE (6,10) CONST,SEED,DIVIDER
10 FORMAT(//,5X,'POWER RESIDUE METHOD WITH THE FOLLOWING PARAMETERS'

& ,/,5X,'IS USED TO GENERATE UNIFORMLY DISTRIBUTED RANDOM '
& _, 'NUMBERS',//, 10X, ' CONSTANT COEFF, CONST',T35,'= ',I8,/,10X
& , 'SEED',T35,'= ',1X,E15.8,/,10X
& , "MODULE DIVIDER, DIVIDER',T35,'=s ',1X,E20.13)
[
. L NN
® ... GENERATE ATMOSPHERIC COEFFICIENTS ....
. L N 3
CALL ATMOS
e
[ ]

«e.. PRINT ATMOSPHERIC COEFFS ....
WRITE (6,15)
15  FORMAT(//,20X,'ACOEFF', 12X, 'BCOEFF')
DO 140 I=1,NWCOMP
WRITE (6,20) I,A(I),B(I)
20 FORMAT(/,5X,15,5X,E13.6,5X,E13.6)
140 CONTINUE »

® ... GENERATE RANDOM VELOCITIES ...
@

R = RRATIO ® ROTR
ANGSTEP = DELTAT * OMEGA
IF (NPTS .EQ. 1) THEN
BEGINR =z R
FINR =R
ELSE
NSEG=NPTS-1

PRINT #, 'NO. OF SEGEMENTS ALONG THE BLADE, NSEG= ', NSEG
PRINT #, 'NO. OF POINTS ALONG THE BLADE WHERE VELOCITY °

, 'COMPONENTS ARE CALCULATED, NPTS= ',NPTS

PRINT #, 'ENTER THE BEGINNING AND FINAL RADIUS ALONG THE '
, 'BLADE, BEGINR, AND FINR.'

, BEGINR,FINR




ENDIF
DO 200 J=1,NRVELOC
PSI=J*ANGSTEP+OMEGAZ
CALL TURBS (XX,YY,ZZ,DELTAT,BEGINR,FINR,NPTS,PSI)
) VX(J)= XX(1)
VY(d)= Y¥(1)
vz(J)= 2Z(1)
200 CONTINUE
e .... CALCULATE MEAN AND VARIANCE OF THE TIME SERIES
CALL MEANVAR (VXMEAN,VXVAR,VX,NRVELOC)
CALL MEANVAR (VYMEAN,VYVAR,VY,NRVELOC)
CALL MEANVAR (VZMEAN,VZVAR,VZ,NRVELOC)
#*

WRITE (6,25) NRVELOC,DELTAT,R,OMEGA,OMEGAZ,VW,TL,TI,SW
& , VXMEAN, VXVAR, VYMEAN, VYVAR, VZMEAN, VZVAR
25 FORMAT(//, 10X, 'NUMBER OF RANDOM VELOCITIES GENERATED, NRVELOC'
,T65,7= ',15,/,10K, ' TIME STEP TO GENERATE THE RANDOM °
, 'VELOCITY, DELTAT',T65,'= ',E12.5,/,10X, 'RADIAL DISTANCE '
,'TO SELECTED POINT ALONG THE ROTOR, R',T65,'= ',E12.5,/
,10X, '"ROTOR SPEED, OMGA',Tul4,'= ',E12.5,T64,' (RAD/SEC)',/
, 10X, ' INITIAL ROTATION, OMEGA-ZERO',T4l4,'= ',E12.5,T64
,'(RAD)',/, 10X, 'WIND VELOCITY, VW', TUl,'= ' E12.5,T64
, ' (FEET/SEC)',/,10X, ' TURBULENCE INTEGRAL SCALE, TL',TAl4
,'= ',E12.5,T64,' (FEET)"',/, 10X, 'TURBULENCE INTENSITY, '
,'TI',T4Y,'= ' E12.5,T64, ' (PERCENT)',/, 10X, 'SPECTRUM OF THE '
,'INPUT WHITE NOISE, SW =',T65,'= ',E12.5,5X,'(SEC)',/,10X
, 'MEAN VALUE OF VX =',E14.7,4X,'VARIANCE OF VX =',6E14.7,/,10X
, "MEAN VALUE OF VY =' ,E14.7,4X, 'VARIANCE OF VY =',E14.7,/,10X
, "MEAN VALUE OF VZ =',E14.7,4X,'VARIANCE OF VZ =',E14.7)

R Re A* R* Re R Re R Re Re Re Re Re

DO 220 J=1,NRVELOC
VX(J)=VX(J)-VXMEAN
VY(J)=VY(J)-VYMEAN
VZ(J)=VZ(J)-VZMEAN

220 CONTINUE
e

PRINT #, 'TO GET LIST OF GENERATED RANDOM VELOCITIES VX, VY, VZ !
PRINT #, 'ENTER (Y OR N)'
READ '(A)', ANS
IF (ANS .EQ. 'Y') THEN

PRINT #, 'ENTER THE NO. OF RANDOM VELOCITIES TO PRINT '

PRINT #, 'UP TO NRVELOC=',NRVELOC

READ #, NOUT

WRITE (6,27) NOUT,DELTAT

DO 225 J=1,NOUT

WRITE (6,29) J,VX(J),VY(J),VZ(J)

s




225 CONTINUE

ENDIF
27 FORMAT (//, 10X, 'NUMBER OF RANDOM NUMBERS TO PRINT,NOUT=',I6,/,
& 10X, 'TIME STEP TO GENERATE THE RANDOM VELOCITIES '
& ,'VX, VY, VZ, DELTAT=',E10.3,/,T28
& , 'VX',TU8,'vy',T68,'VZ',"' (MEANS ARE SUBTRACTED)')
29 FORMAT (10X,I4,T20,E14.7,T40,E14.7,T60,E14.7)

® ... PLOT RANDOM VELOCITY TIME SERIES VS TIME ....
PRINT #, 'TO USE SUBROUTINE PLTSTND TO PLOT THE GENERATED RANDOM '
PRINT *, 'VELOCITY VS TIME , ENTER (Y OR N) '
READ '(A)', ANS
882 IF (ANS .EQ. 'Y' ) THEN
PRINT *, 'SELECT THE RANDOM VELOCITY TIME SERIES. ENTER '
PRINT #, ' yX OR VY OR VZ. '
READ '(A)', ANS1
PRINT #, 'ENTER THE LENGTH OF RANDOM VELOCITY TIME SERIES '
PRINT #, ' ,LVPLT FOR PLOTTING UP TO NRVELOC =',NRVELOC
READ #, LVYPLT
IF ( ANS1 .EQ. 'VX' ) THEN
DO 230 I=1,LVELT
Y(1)=VX(I)
230 CONTINUE
ELSEIF ( ANS1 .EQ. 'VY' ) THEN
DO 232 I=1,LVPLT
Y(I)=VY(I)
232 CONTINUE
ELSEIF ( ANS1 .EQ. 'VZ' ) THEN
DO 234 I=1,LVPLT

Y(I)=vZ(I)

234 CONTINUE

ENDIF
. LN ]

CALL PLTSTND (Y,LVPLT,DELTAT,ANS1)
. L AL 4

PRINT ®

PRINT @

PRINT #, 'DO YOU WANT TO PLOT ANY OTHER RANDOM VELOCITY '
PRINT *, 'TIME SERIES ? ENTER (Y OR N)'
READ '(A)', ANS
GO TO 882
ENDIF
® ... EVALUATE PROBABILITY DISRIBUTION OF RANDOM VELOCITY ....
PRINT #, 'DO YOU WANT TO EVALUATE PROBABILITY DISTRIBUTIONS OF'
PRINT #, 'THE GENERATED RANDOM VELOCITIES ? ENTER (Y OR N)'
READ '(A)', ANS
IF (ANS .EQ. 'Y') THEN
DO 250 KPROB =1,3
IF (KPROB .EQ. 1) THEN
DO 240 I=1,NRVELOC
Y(I)=VX(I)
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2u0 CONTINUE
VARIANC=VXVAR
ANS1 = 'VX!
ELSEIF (KPROB .EQ. 2) THEN
DO 242 I=1,NRVELOC
Y(I)=VY(1)
242 CONTINUE
VARIANC=VYVAR
ANST = 'VY!
ELSEIF (KPROB .EQ. 3 ) THEN
DO 244 I=1,NRVELOC
Y(I)=VZ(I)
244 CONTINUE
VARIANC=VZVAR
ANSY1 = 'V
ENDIF
cesee GENERATE UNITY VARIANCE RANDOM VELOCITY TIME SERIES cee
DO 245 1=1,NRVELOC
Y(I)=Y(I)/SQRT(VARIANC)
2ls CONTINUE
CALL PROB (Y,NRVELOC,NBINS,VRANGE,PROBDIS)
NBX2=2#NBINS
NBX2M1=NBX2-1
DELTAV=VRANGE/(NBINS-1)
DO 246 I=1,NBX2M1
X(I)=-VRANGE+(I-1)*DELTAV
246 CONTINUE
WRITE (6,30) ANS1,NRVELOC,ANS1
DO 248 I=1,NBX2
IF (I .EQ. 1) THEN
WRITE (6,32) X(I),PROBDIS(I)
ELSEIF (I .EQ. NBX2) THEN

IM1=I-1
WRITE (6,34) X(IM1),PROBDIS(I)
ELSE
IM1=I-1
PROBDEN = PROBDIS(I)/DELTAV
XAVE = (X(I)+X(IM1))/2.
STNDEN = EXP(-0.S*XAVE##2)/SQRT(2.*PI)
WRITE (6,36) X(IM1),X(I),PROBDIS(I),XAVE,PROBDEN
& , STNDEN
ENDIF
2u8 CONTINUE
250 CONTINUE
ENDIF
30 FORMAT (//,10X,'PROBABILITY DISTRIBUTION OF RANDOM VELOCITY '
& ,'TIME SERIES',A4,' OF LENGTH = ',I5,//,10X
& , 'PROBABILITY OF VARIATES', 15X, 'MID-INTERVAL',5X
& , "PROBABILITY DENSITY',5X,'STANDARD NORMAL',/, 10X
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& ,'IN THE INTERVAL',T66,'ORDINATES OF ',AH4,T93
& , "ORDINATES' , /)
32 FORMAT (10X,'LESS THAN ',3X,'(',F6.2,') =',E11.4)
34  FORMAT (10X,'C ZATER THAN ','(',F6.2,') =',E11.4)
36 FORMAT (15X,'(',F6.2,' ,',F6.2,') =',E11.4,T52,F6.2

& ,T68,E12.6,T90,E12.6)
%

% ... GENERATE FREQUENCY SPECTUM OF THE GENERATED RANDOM VELOCITY ...
{

PRINT #, 'DO YOU WANT TO GENERATE THE FREQUENCY SPECTRUM OF '
PRINT #, 'THE TIME SERIES ? ENTER (Y OR N)'
READ '(A)', ANS
884 1IF (ANS .EQ. 'Y') THEN
PRINT #, 'INPUT ONE TIME SERIES TO GENERATE SPECTRUM. '
PRINT #, 'ENTER VX OR VY OR VZ '
READ '(A)', ANS1
IF ( ANST .EQ. 'VX' ) THEN
DO 252 I=1,NRVELOC
Y(I)=VX(I)
252 CONTINUE
ELSEIF ( ANS1 .EQ. 'VY' ) THEN
DO 254 I=1,NRVELOC
Y(I)=VY(I)
254 CONTINUE
ELSEIF ( ANS1 .EQ. 'VZ' ) THEN
D0 256 I=1,NRVELOC

Y(1)=vZ(I)
256 CONTINUE
ENDIF
% ... LENCTH OF THE TIME SERIES HAS TO BE EVENLY DIVISIBLE  ....
# _... BYL, LENGTH OF EACH SUBSEGMENT. IF THIS CONDITION ceee
® .... DEOS NOT MEET PAD BOTH TIME SERIES WITH ZEROES AT ceen
# .... RIGHT END. cees
® .... NOTE: IF THE NUMBER OF GENERATED RANDOM VELOCITY ceen
. .... COMPONENTS, NRVELOC, IS NOT EVENLY DIVISIBLE BY ....
. ... LENGTH OF THE SPECTRUM, LSPECT, THEN NRVELOC
°.... MUST BE SMALLER THAN THE DECLARED SIZE OF RANDOM ....
. ... VELOCITY COMPONENT ARRAYS AT MOST BY LSPECT. ceee
. LI N I )
LD2=LSPECT/2
LD2P1=LD2+1
NSEG= INT(NRVELOC/LSPECT) .
RNSEG=REAL (NRVELOC) /REAL (LSPECT)
DI zRNSEG-NSEG
IF(DIFF .NE. 0.0) THEN
LTS= (NSEG+1)#LSPECT
IPAD=NRVELOC+1
DO 300 J=IPAD,LTS
Y(J)=0.0
300 CONTINUE




ENDIF

CALL PSD (Y,LTS,LSPECT,LP2,DELTAT,PSY,ZY)

«... FORM THE FREQUENCY VECTOR ....

L

DO 325 I=1,LD2P1
I1=1I-1
F(I)=I1/(LSPECT®*DELTAT)
325 CONTINUE
cees PRINT POWER SPECTRUM ....
WRITE (6,40) ANS?1
DO 340 I=1,LD2P1
WRITE (6,42) F(I),PSY(I)
340 CONTINUE
e ... PRINT SUM OF THE POWER SPECTRA ceee
SUMY=0.0
DO 345 K=1,LD2P1
SUMY=SUMY+PSY(K)

345 CONTINUE
WRITE (6,44) ANS1 , SUMY
40 FORMAT(//,5X, 'FREQUENCY ' ,T20, 'POWER SPECTRUM',/,T2U,AH4)
42 FORMAT(UX,F10.4,T20,E14.7)
Y- FORMAT(//, 10X, 'SUM OF THE PSD OF(',A4,' )S=',E14.7)
[}
[}

«ees ELIMINATE ZERO FREQUENCY FOR LOG-LOG PLOTTING ....

DO 370 I=2,LD2P1
J=I-1
F(J)=F(I)
370 CONTINUE
«ees PLOT LOG-LOG SPECRTAL DENSITY OF RANDOM VELOCITY VS FREQUENCY ....
PRINT #, 'TO USE PLTLOG TO PLOT THE SPECTRUM ENTER (Y OR N)'
READ '(A)', ANS
IF (ANS .EQ. 'Y') THEN
® ... GENERATE SPECTRUM VECTORS oo
DO 380 I=2,LD2P1
J=I-1
SOUT(J)=PSY(1I)
380 CONTINUE -

ceee PLOT POWER SPECTRUM cese

CALL PLTLOG (SOUT,F,LD2,LABEL,ANS1)

PRINT #
ENDIF

PRINT #, 'DO YOU WANT SPECTRUM FOR OTHER TIME SERIES? '
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PRINT #, 'ENTER (Y OR N)'
READ '(A)', ANS
GO TO 884

ENDIF

PRINT #, 'DO YOU WANT TO PROCESS ANOTHER DATA FILE ? '
PRINT #*, 'ENTER (Y OR N)'

READ '(A)', ANS

IF (ANS .EQ. 'Y') GO TO 881

STOP

END
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SUBROUTINE TURBS (XX,YY,ZZ,DELTAT,BEGINR,FINR,NPTS,PSI)
CCCCcccceeccceeecececccececceeeccccccceccceccecccccceccecceeceececcccececcce

C c
c C
c SUBROUTINE TURBS CONSTRUTS TURBULENCE VELOCITY COMPONENTS C
c ALONG THE BLADE FOR EACH AZIMUTH ANGLE AT EACH TIME STEP. C
c THE NUMBER OF POINTS ALONG THE BLADE AT WHICH TURBULENCE C
c VELOCITY IS EVALUATED IS GIVEN AS A PARAMETER , NPTS IN c
c PROGRAM SIMULX, AND CAN EASILY BE CHANGED. THE TURBULENCE C
C VELOCITY COMPONENTS ARE COMPUTED AT EQUALLY DISTANCED c
C POINTS ALONG THE BLADE FROM AN INITIAL RADIUS TO A FINAL c
c RADIUS WHICH USER CAN DETERMINE. C
c IN THE PRESENT ANALYSIS ONLY ONE RADIAL POSITION AT THE c
c TIP WAS CONSIDERED (NPTS = 1). c
c C
c c
C C

CCCCccccccceccececcecececccecccecccececcceecccceccecccececccecceccecceccceece

INTEGER CONST,NPTS,NWCOMP
REAL BEGINR,FINR,DELTAT,PSI,DIVIDER
PARAMETER ( NWCOMP=12 )
REAL XX(NPTS),YY(NPTS),ZZ(NPTS),U(NWCOMP),W(NWCOMP)
REAL A(NWCOMP),B(NWCOMP),CC(NWCOMP ) ,DD(NWCOMP)
DOUBLE PRECISION SEED
COMMON /TURBINE/ OMEGA,OMEGAZ,ROTR
COMMON /WIND/ TL,TI,SW,WN
COMMON /ATMOS/ A,B
COMMON /RAND/ CONST, SEED, DIVIDER
SAVE W
DATA W /NWCOMP ® 0.0/
% ... GENERATE COEFFICIENTS FOR FILTERS .....
DO 10 I=1,NWCOMP
AT=DELTAT*A(I)
CC(I)=EXP(-AT)
DD(I)=B(I)*SQRT((6.%SW/A(I))*(1.-EXP(-2.%AT)))
10  CONTINUE ~

® . ... GENERATE NWCOMP RANDOM NUMBERS .....
e

CALL RANDOM (U,NWCOMP)
® ... GENERATE WIND VELOCITY COMPONENTS ....

DO 20 I=1,NWCOMP
U(1)=U(1)-0.5
W(I)=CC(I)*W(TI)+DD(I)*U(1)

20 CONTINUE

IF (NPTS .EQ. 1) THEN

RSTEP=0.0
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30

R* R Re Re

ELSE
RSTEP=(FINR-BEGR)/(NPTS-1)
ENDIF
R=BEGINR
PSIX2=2%PSI
ROTRSQ=ROTR#*ROTR
DO 30 I=1,NPTS
R=R+(I-1)*RSTEP
RSQ=R*R
XX(I)=W(1)=(W(6)-W(T))*R*COS(PSI)

-(W(8)-W(9))*R¥SIN(PSI)
YY(I)=W(2)+W(5)*R*COS(PSI)+W(U)*R*SIN(PSI)
+W(10)*(RSQ-ROTRSQ/2.)
+W( 11)#RSQ*COS(PSIX2)+W( 12 ) *RSQ*SIN(PSIX2)
2Z(I)=W(3)+(W(6)+W(T))*R*SIN(PSI)
+(W(8)+W(9) ) *R*COS(PSI)
CONTINUE
RETURN
END
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SUBROUTINE ATMOS

cccceececceceecccecececcecceecceecccccccceccceceeccccccccececceceeecceceeecee

c
C
c
c
c
c
C
c
c
c
C

SUBROUTINE ATMOS COMPUTES THE TURBULENCE MODEL PARAMETERS A, B,
AND SW, WHERE A(I) AND B(I) ARE THE DIAGONAL ELEMENTS FOR
THE MATRICES IN THE WIND STATE EQUATION

DX/DT = -A®X + B®VW

CCCCccccceecececccccecccececceccccccccceccccceeccececcccceccecccccccece

INTEGER NWCOMP
PARAMETER (NWCOMP=12)

REAL ROTR,TI,TL,SW,VW

REAL A(NWCOMP),B(NWCOMP)

COMMON /TURBINE/ OMEGA,0MEGAZ,ROTR
COMMON /WIND/ TL,TI,SW, W

COMMON /ATMOS/ A,B

® .... CALCULATE THE POWER SPECTRUM FOR THE NOISE INPUT ....

SW=TL*(TI*TI)/VW/10000.
RR=ROTR/TL

TWSQ=VW#YW

ROTRSQ=ROTR##2
DIMCOA= VW/TL
DIMCOBZ=VWSQ/TL
DIMCOB1=VWSQ/(ROTR*IL)
DIMCOB2=VWSQ/(ROTRSQ¥*TL)
A(1)= (2.-2.894%*RR*(1.-.1383*RR)/(1.+2.049%RR)) #DIMCOA
B(1)= (2.-3.290%RR¥*(1.+.02TO*RR)/(1.+2.054%RR)) *DIMCOBZ
A(2)= (1.-1.T13*RR*(1.-.0791*RR)/(1.+2.0U48*RR)) *DIMCOA
B(2)= (SQRT(2.)-2.T13*RR*(1.+.0159%*RR)/(1.+2.051%RR))
+ ®DIMCOBZ
A(3)= A(1)

B(3)= B(1)

A(4)= (.327/RR + .595 - .114%#RR) * DIMCOA
B(4)= (.281/RR**.25 4+ 645 - ,150%RR) ®*DIMCOB1
A(5)= A(d)

B(5)= B(Y4) :
A(6)= (.U34/RR + .917 - .153%RR) *DIMCOA
B(6)= (.258/RR#*.25 4+ .64T - .1093%*RR) *DIMCOB1
A(T)= (.5342/RR + 1.276 -.2147#RR) #*DIMCOA
B(7)= (.116T/RR**.25 + .T733 -.1284%*RR) *DIMCOB1
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AND W IS WHITE NOISE WITH PSD=SW.
THE EQUATIONS WERE DETERMINED BY LEAST SQUARE REGRESSION TO
DATA PRODUCED BY NUMERICAL COMPUTATION. (SEE REPORT)

c
c
c
C
c
C
c
C
C
C
C




A(8)= A(T)

B(8)= B(7)

A(9)= (1.654/RR + 1.069 + 2.154%RR) *DIMCOA

B(9)= (.3546/RR**.,25 + ,3951 + .2593*RR) *DIMCOB1
A(10)= (1.091/RR + .0276 + .0686%*RR) *DIMCOA
B(10)= (.5508/RR#*.25 4+ _6U4T3 -.1365%RR) #*DIMCOB2
A(11)= (1.081/RR + .0279 + .0685%RR) *DIMCOA
B(11)= (.3896/RR**.25 + .4567 -.09U8%*RR) #DIMCOB2
A(12)= A(11)

B(12)= B(11)

RETURN

END
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SUBROUTINE RANDOM (S,N)

Ccccccccececececeeccecececcccccecececcccecceeccccececcceeccccceccececcececce

c C
c C
c SUBROUTINE RANDOM GENERATES UNIFORMLY DITRIBUTED RANDOM c
c NUMBERS BETWEEN ZERO AND ONE USING POWER RESIDUE METHOD. C
C c
c c
CCCcccccceececcceccececeecceceeeccccecccceccccceccceccccecceccceecccecccecce

INTEGER CONST,N
REAL DIVIDER,S(N)
DOUBLE PRECISION SEED,INTPROD
COMMON /RAND/ CONST, SEED, DIVIDER
DO 10 I=1,N
INTPROD=CONST#*SEED
IF (INTPROD .LT. DIVIDER) THEN
S(I)=INTPROD
ELSE
S(1)=INTPROD-INT(INTPROD/DIVIDER)*DIVIDER
ENDIF
SEED=S(I)
S(1)=S(I)/DIVIDER
10  CONTINUE
RETURN
END
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SUBROUTINE MEANVAR (MEAN,VAR,S,N)

ccceeececceccecccceceecccecceccceccccececcccccccecccecccceece

c C
c C
c SUBROUTINE MEANVAR COMPUTES MEAN AND VARIANCE c
c OF TIME SERIES. : c
C C
C c

CCCCccccccceccceecceccecececccecccececccecccecececccecececcceceee

INTEGER N

REAL MEAN,VAR,S(N)

SUM=0.

DO 20 I=1,N
SUM=SUM+S(I)

20 CONTINUE
MEAN=SUM/FLOAT(N)
DIFF=0.

DO 30 I=1,N
DIFF=DIFF+(S(I)-MEAN)##2

30 CONTINUE
VAR=DIFF/FLOAT(N)
RETURN
END
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}

SUBROUTINE PROB (VTS,LVTS,NBINS,VRANGE,PROBDIS)
cceeececccceececccecececcecccceeccccccceccceecccecccccccecccceeece

c
c
SUBROUTINE PROB COMPUTES PROBABILITY DISTIBUTION C
OF TIME SERIES. c
C
c
C

Qoo

CCCccccccecceccecececceceeeccceccecccccecceccceccecccccccecceccce

INTEGER LVTS,NBINS,BINNUM
REAL DELTAV,VRANGE ;
REAL VTS(LVTS),PROBDIS(2#NBINS)
NBX2=2#NBINS
DO 20 I=1,NBX2

PROBDIS(I)=0.0

e oM TInnm
< AJEINL LAV,

DELTAV=VRANGE/(NBINS-1)
DO 30 I=1,LVTS
IF ( VTS(I) .LT. 0.0 ) THEN
IF ( VTS(I) .GE. -VRANGE ) THEN
BINNUM=NBINS+INT(VTS(I)/DELTAV)
ELSE
BINNUM=1
ENDIF
PROBDIS(BINNUM)=PROBDIS(BINNUM)+1./LVTS
ELSEIF ( VTS(I) .GE. 0.0 ) THEN
IF ( VTS(I) .LE. VRANGE ) THEN
BINNUM=NBINS+INT(VTS(I)/DELTAV)+1
ELSE
BINNUM=2#NBINS
ENDIF
PROBDIS(BINNUM )=PROBDIS(BINNUM)+1./LVTS
ENDIF
30 CONTINUE
RETURN
END
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SUBROUTINE PSD (Y,N,L,LP2,DT,PSY,ZY)

cceeeeccccceccccccceccceccceccecccececccececcccececececcceccccccececececcceccececeece

c
c
c
c
C
c
c
C
C
c
c
c
C
C
C
C
C
C
C
c
C
c
C
C
C
C
C
c
c
c
c
c
c
c
C

SUBROUTINE PSD USES FFT TO ESTIMATE THE FREQUENCY SPECTRUM OF
TIME SERIES

ARGUMENTS
Y -INPUT VECTOR OF LENGTH N CONTAINING
THE TIME SERIES.
N -INPUT LENGTH OF THE TIME SERIES.
L -LENGTH OF THE TIME SERIES IN EACH SEGMENT.

L MUST BE A POWER OF 2.

LP2  -L=2##LP2 (L AS POWER OF TWO)

LD2P1 -SPECTRAL COMPUTATIONS ARE AT
LD2P1= (L/2)+1 FREQUENCES.

DT -SAMPLING INTERVAL (SEC)

PSY -OUTPUT VECTOR OF LENGTH LD2P1 CONTAINING
THE SPECTRAL ESTIMATES OF Y
NOTE THAT THE SPECTRAL ESTIMATES ARE
TAKEN AT FREQUENCES (I-1)/(L*DT) (HERTZ)
FOR I=1,2, ...,LD2P1

YA 4 -COMPLEX WORK VECTOR OF LENGTH L

REMARKS :

1) THE SPECTRAL DENSITY FUNCTION IS DEFINED
ACCORDING TO EQ. 2.3 FROM CHAPTER TWO.

2) PRIOR TO CALLING PSD, THE MEAN OF TIME
SERIES Y SHOULD BE REMOVED FROM EACH
ELEMENT OF THE TIME SERIES.

3) THE OUTPUT IS RETURNED IN UNITS WHICH ARE
THE (SQUARE OF THE DATA)/FREQUENCE

SEGMENT AVERAGING IS USED TO OBTAIN THE SMOOTH ESTIMATES
THE TOTAL SAMPLE SIZE N = NSEG®L = NSEG®(2%¥*LP2) '
WHERE NSEG = NUMBER OF SEGMENTS

REAL Y(N),PSY(L/2+1)
COMPLEX ZY(L)

LD2P1 = L/2 + 1
NSEG = INT(N/L)
PI = ACOS(-1.0)
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C
CCCCCCCCCCCCccccceececececcceceecccccecceeccecececceccceccecececccececccceccceccecce




o % 0 O -

30
50

60

- SCALE FACTOR 0.875 IS DUE TO THE COSINE TAPPERING

TO ADJUST THE POWER SPECTRAL ESTIMATE RESULTS
FACTOR=(DT®*REAL(L))/(0.875)
INITIALIZE THE PSY

DO 5 J=1,LD2P1
PSY(J)=0.0
CONTINUE
DO 50 I=1,NSEG
ND=(I-1)%L
DO 10 J=1,L
JPND=J+ND
2Y(J)=CMPLX(Y(JPND),0.0)
CONTINUE

TAPERING THE DATA SEQUENCE USING ceee
THE COSINE TAPER DATA WINDOW cees

COMPUTE DFT cees
CALL FFT(ZY,LP2,L)

DO 30 J=1,LD2P1
PSY(J)=PSY(J)+FACTOR®ABS(ZY(J) )*ABS(ZY(J))
CONTINUE
CONTINUE

AVERAGE THE RESULTS FROM NSEG SEPARATE SEGMENTS

DO 60 I=1,LD2P1
PSY(I)=PSY(I)/REAL(NSEG)
CONTINUE

RETURN
END
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SUBROUTINE TAPER(ZY,L,DT)
Cceeeceecccceecceccccceccccccccececcceceececceccececcceccccececcecccee

A SMOOTH FILTER SHAPE FOR FFT ESTIMATES TO

REDUCE LEAKAGE CAN BE OBTAINED BY TAPERING

THE ORIGINAL RANDOM TIME SERIES AT EACH END.
SUBROUTINE TAPER USES A COSINE TAPER DATA

WINDOW TO SMOOTH THE DATA AT 1/10 OF EACH

END OF THE RECORD (SEE FIG 11.8, PG 146, NEWLAND,
REFERENCE 1 IN APPENDIX B).

ZY -INPUT COMPLEX VECTOR OF LENNGTH
L CONTAINING THE ORIGINAL DISCRETE
TIME SERIES
-OUTPUT COMPLEX VECTOR OF LENGTH
L CONTAING THE TAPERED DATA
L  -INPUT LENGTH OF THE TIME SERIES

C
C
Cc
”
c
C
c
C
c
c
c
C
c
C
C
C
C
DT -SAMPLING INTERVAL c
C

c
c
c
c
C
c
C
c
C
c
c ARGUMENTS
c
c
c
c
C
C
C
C
C
C

c
ccceeecccececececcccccccccccccccccecececececcecececcccceccecccccececcececce

COMPLEX ZY(L)

PI=ACOS(~-1.0)
T=DT*REAL(L)
TD10=T/10.0
C1=9.0%*TD10
CONST=PI/TD10
Do 20 I=1,L

TIME=DT#REAL(I-1)

IF (TIME .LE. TD10) THEN
WT = 0.5 - 0.5 ® COS(CONST ® TIME)
2Y(I) = ZY(I)®T

ELSEIF (TIME .GE. C1) THEN

WT = 0.5 + 0.5 ® COS(CONST ¢ (TIME-C1))
ZY(I) = ZY(I) ® wT
END IF
20 CONTINUE
RETURN
END
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SUBROUTINE FFT(A,NP,N).

ccceeeecececcececcceceececeeccecccccecccceeccecccccecceccceccceeccece

SUBROUTINE FFT FROM NEWLAND (PG 220), REFERENCE 1
APPENDIX B, CALCULATES THE DFT OF A SEQUENCE A(1),
A(2), ...,A(N), WHERE N = 2%##NpP, BY THE FFT METHOD.

C
c
C
Cc
o]
C
C ARGUMENTS

C A -INPUT COMPLEX VECTOR OF LENGTH N

C CONTAINING THE DISCRETE TIME SERIES
C -QUTPUT COMPLEX VECTOR OF LENGTH N
Cc CONTAINING THE REQUIRED DFT

C NP -N=2##NpP

Cc N -INPUT LENCTH OF THE TIME SERIES

c

c

C

CCCCCCCCCccceecccececcececececcececcccececeeeceecceccecceccceccee

COMPLEX A(N),U,W,T

PI=ACOS(-1.0)
c DIVIDE ALL ELEMENTS BY N

DO 1 J=1,N
A(J)=A(J)/N
1 CONTINUE
ND2=N/2
NM1=N-1
J=1
DO 4 L=1,NM1
IF (L .GE. J) GO TO 2
T=A(J)
A(J)=A(L)
A(L)=T
2 K=ND2
3 IF (K .GE. J) GO TO 4
J=J-K
K=K/2
GO TO 3
4 J=Jd+K
DO 6 M=1,NP
U=(1.0,0.0)
ME=2##M
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C
C
c
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K=ME/2 )
W=CMPLX(COS(PI/K),-SIN(PI/K))
DO 6 J=1,K
DO 5 L=J,N,ME
LPK=L+K
T=A(LPK)®*U
A(LPK)=A(L)-T
A(L)=A(L)+T
U=U*
RETURN
END
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SUBROUTINE PLTSTND (VTS,LVPLT,DELTAT,ANS1)
INTEGER MARK, ICODE, IRATE,MODEL

PARAMETER (MARK=0)

REAL DELTAT,WIDTH,HEIGHT,VBIAS,TBIAS

REAL VTS(LVPLT)

CHARACTER *40 TIMELBL, VELCLBL, ANS1#2

DATA ICODE/ 1 /,IRATE/ 2400 /,MODEL/ 4014 /
DATA WIDTH/ 9.0 /,HEIGHT/ T.0 /

DATA TORIG/ 0.0 /, VORIG/ 0.0 /, TBIAS/ 3. /, VBIAS/ 1. /
TIMELBL = 'TIME (SEC)'

VELCLBL = 'RANDOM TURBULENCE VELOCITY '//ANS1

«... FORM MIN & MAX ON THE TIME AXIS ....
TMIN=0.0
TMAX=LVPLT#DELTAT
TFACT=WIDTH/(TMAX-TMIN)

.... FIND MIN & MAX OF RANDOM VELOCITY VECTOR, VTS ....
CALL CHECK (VTS,LVPLT,VMIN,VMAX)
VFACT=HEIGHT/(VMAX-VMIN)

CALL PLOTYPE (ICODE)
CALL TKTYPE (MODEL)
CALL BAUD (IRATE)
CALL SIZE (WIDTH+6. , HEIGHT+3.)
CALL TEKPAUS
CALL SCALE (TFACT,VFACT,;TBIAS,VBIAS,TMIN,VMIN)
CALL AXISL (TMIN,TMAX,TORIG,VMIN,VMAX,VORIG,0.0,1.0,
& 0,0, -1,2, 1,1 ,0.2,0)
«ess« PRINT HEADINGS .... ,
XPOS=TMAX+. 1/TFACT
YPOS=-0.2/VFACT
CALL SYMBOL (XPOS,YP0S,0.0,0.2,40,TIMELBL)
XPOS=TMIN+1./TFACT
YPOS=VMAX+0.4/VFACT
CALL SYMBOL (XPOS,YP0S,0.0,0.2,40,VELCLBL)
«... PLOT RANDOM VELOCITY ....
CALL VECTORS
IP=0
DO 10 I=1,LVPLT
1J=I-1
XT=1J#DELTAT
YV=VTS(I)
CALL PLOT (XT,YV,IP,MARK)
IP=1
10 CONTINUE
CALL PLOTEND
RETURN
END
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SUBROUTINE PLTLOG (SPECT,FREQ,LHALF,LABEL,ANSPLT)
INTEGER MARK,NLABEL, ICODE, IRATE,MODEL
PARAMETER (NLABEL=1,MARK=26)
REAL WIDTH,HEIGHT,FBIAS,SBIAS
REAL SPECT(LHALF),FREQ(LHALF)
CHARACTER *40 LABEL(NLABEL), FREQLBL, PSDLBL*60, ANSPLT*2
DATA ICODE/1/ IRATE/2400/ MODEL/4014/ WIDTH/9./ HEIGHT/T./
DATA FBIAS/1./ SBIAS/1./
FREQLBL = 'FREQ (HZ) '
PSDLBL = 'PSD OF '//ANSPLT//' '//LABEL(NLABEL)
.... FIND MIN AND MAX OF THE FREQUENCY VECTOR ....
CALL CHECK (FREQ,LHALF,FMINC,FMAXC)
FMIN=ALOG10(FMINC)
FMAX=ALOG10(FMAXC)
FFACT=WIDTH/(FMAX-FMIN)
.«.. FIND MIN & MAX OF THE SPECTRUM VECTOR ....
CALL CHECK (SPECT,LHALF,SMINC,SMAXC)
CALL RANGEL (SMINC,SMAXC,SMINR,SMAXR)
SMIN=ALOG10(SMINR)
SMAX=ALOG10(SMAXR)
SFACT=HE I GHT/( SMAX-SMIN)
CALL PLOTYPE(ICODE)
CALL TKTYPE(MODEL)
CALL BAUD(IRATE)
CALL SIZE(WIDTH+2.5,HEIGHT+2.5)
CALL TEKPAUS
CALL SCALE (FFACT,SFACT,FBIAS,SBIAS,FMIN,SMIN)
CALL AXISL (FMINC,FMAXC,FMINC,SMINC,SMAXC,SMINC,1.,1.
& ,0,0,1,1,1.,1.,0.1,3)
«eeo PRINT HEADINGS ....
XPOS=FMIN+3.5/FFACT
YPOS=SMIN-0.25/SFACT
CALL SYMBOL (XPOS,YPOS,0.,0.2,40,FREQLBL)
XPOS=FMIN+1./FFACT
YPOS=SMAX+0.2/SFACT
CALL SYMBOL (XPOS,YPOS,0.,0.2,60,PSDLBL)
«eeo PLOT POWER SPECTRUM ....
CALL POINTS
IP=0
DO 100 I=1,LHALF
XF=ALOG10(FREQ(I))
YS=ALOG10(SPECT(I))
CALL PLOT (XF,YS,IP,MARK)
IP=1
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CONTINUE

CALL PLOTEND

100



APPENDIX D, INPUT DATA FILE

The following sample input data file is for Mod-0A turbine.
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APPENDIX E.

PROCEDURAL EXAMPLE OF THE PROGRAM SIMULX

INTERACTIVE RUN
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APPENDIX F. RESULTS OF THE SAMPLE RUN FOR Mod-~OA TURBINE

The simulated results are as observed from the tip of a

Mod-OA.wind turbine blade.
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Rotor Disk

Figure 1.1. Rotor disk coordinate system.
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Figure 1.2. Streamlines for in-plane velocity
gradient terms.




